
67

Inner Source Definition, Benefits, and Challenges

MAXIMILIAN CAPRARO and DIRK RIEHLE, Friedrich-Alexander-Universität Erlangen-Nürnberg

Inner Source (IS) is the use of open source software development practices and the establishment of an
open source-like culture within organizations. The organization may still develop proprietary software but
internally opens up its development. A steady stream of scientific literature and practitioner reports indicates
the interest in this research area. However, the research area lacks a systematic assessment of known
research work: No model exists that defines IS thoroughly. Various case studies provide insights into IS
programs in the context of specific organizations but only few publications apply a broader perspective.
To resolve this, we performed an extensive literature survey and analyzed 43 IS related publications plus
additional background literature. Using qualitative data analysis methods, we developed a model of the
elements that constitute IS. We present a classification framework for IS programs and projects and apply
it to lay out a map of known IS endeavors. Further, we present qualitative models summarizing the benefits
and challenges of IS adoption. The survey provides the first broad review of IS literature and systematic
arrangement of IS research results.

Categories and Subject Descriptors: A.1 [Introductory and Survey]; D.2.9 [Software Engineering]:
Management—Lifecycle; Productivity; Programming teams; Software process models; D.2.13 [Software En-
gineering]: Reusable Software—Reuse models; K.6.1 [Management of Computing and Information
Systems]: Project and People Management

General Terms: Economics, Human Factors, Management

Additional Key Words and Phrases: Inner source, taxonomy, open collaboration, internal open source, soft-
ware development methods, software engineering, software development efficiency, software development
productivity

ACM Reference Format:
Maximilian Capraro and Dirk Riehle. 2016. Inner source definition, benefits, and challenges. ACM Comput.
Surv. 49, 4, Article 67 (December 2016), 36 pages.
DOI: http://dx.doi.org/10.1145/2856821

1. INTRODUCTION

Open source software plays a crucial role in today’s software industry. Open source
development tools help to build software and open source components are used as part
of proprietary software. Organizations employ a variety of strategies and business
models to get involved with or benefit from open source communities [Riehle 2007,
2009]. Open source is recognized to be capable of delivering high quality software
[Crowston et al. 2008].

Consequently, researchers and software developing organizations desire to know how
the success of open source is possible and how industry could benefit not only from its

This work was partially funded by a Black Duck Software Inc. grant to the Open Source Research Group at
Friedrich-Alexander-Universität Erlangen-Nürnberg.
Authors’ address: M. Capraro and D. Riehle, Friedrich-Alexander-Universität Erlangen-Nürnberg, Open
Source Research Group, Martensstr. 3, 91058 Erlangen, Germany; emails: maximilian.capraro@fau.de,
dirk.riehle@fau.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0360-0300/2016/12-ART67 $15.00
DOI: http://dx.doi.org/10.1145/2856821

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

http://dx.doi.org/10.1145/2856821
http://dx.doi.org/10.1145/2856821

67:2 M. Capraro and D. Riehle

outcomes (the software components and tools) but also from the development practices
exercised in the open source world.

Inner source (IS), first mentioned by O’Reilly [2000], is an answer to this question.
In IS, development practices and culture from the open source world are implemented
within organizations. While the development is similar to and shares attributes with
open source software development, the software remains proprietary and is only avail-
able to a defined group of developers (for example, the employees of an organization).
A steady stream of scientific publications and other sources such as blog and magazine
articles since 2002 indicates a vivid interest in this research topic.

The majority of scientific publications present case studies of IS in the context of
one or a few organizations. However, the area lacks a systematic arrangement of prior
research work: No consistent taxonomy has been presented yet. It is not clear which
general elements constitute IS. Differences of IS programs, benefits, and challenges
of IS adoption as well as practices to tackle these challenges were studied only in
the context of selected organizations. The absence of models that have validity for
more than a few organizations leaves researchers with a weak foundation for further
research. It creates uncertainty and the risk that the term IS is used with ambiguous
meanings or varying understandings.

This article resolves the issue by assessing the state of the research and introducing
a set of qualitative IS models that provide a unified view of IS research results. For this
survey, we considered a total of 43 scientific publications plus additional materials. In
detail, the contributions of this article are

—a discussion of concepts and definitions regarding IS including a theoretical model
of elements that constitute IS;

—a classification framework for IS programs and projects as well as the application of
the framework to known instances; and

—qualitative models summarizing reported IS benefits and adoption challenges.

The remainder of this article is structured as follows: Section 2 discusses the re-
search methods we used for literature selection and analysis. Section 3 discusses defi-
nitions and concepts regarding IS and introduces a model describing the elements that
constitute IS. Section 4 introduces a classification framework for IS and applies the
framework to known IS programs and projects to demonstrate its capabilities. Section 5
introduces a qualitative model of seven IS benefits we synthesized from literature and
case study reports. Section 6 presents a similar qualitative model describing adoption
challenges. Section 7 suggests a roadmap for future research and closes the article with
a conclusion.

1.1. Related Work

Naturally, this survey article contains, summarizes, and rearranges publications re-
lated to IS and our research objectives. However, some publications presented similar
contributions to ours. In the next paragraphs, we briefly discuss the relationship of this
prior work to the results we present.

Elements of Inner Source. Sharma et al. [2002] analyzed open source communities
and derived a framework for creating IS communities. Their framework suggests that
community building, governance of the community, and community infrastructure are
critical to IS adoption. Stol et al. [2014] presented a model of nine key factors regarding
software products, practices and tools, and organization and community that need to be
considered for successful IS adoption. Contrary to the models by Sharma et al. [2002]
and Stol et al. [2014], our model does not aim to explain IS adoption but to define IS
and its elements. Stol et al. [2014] also discussed attributes that characterize IS. Our

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:3

model of elements of IS integrates some of their attributes (e.g., “universal access to
development artifacts” and “informal communication” as part of the open environment
element). However, our model presents a more extensive and detailed account of IS
elements.

Other models also aim to characterize IS itself and not only the IS adoption.
Vitharana et al. [2010] present a theoretical model of IS based on a case study within
IBM’s IS program called Community Source. Their paper shows that IS adoption leads
to an open development infrastructure, information sharing, and broader community
skills, which finally results in enhanced reuse. The model does not discuss which
elements constitute IS. Gaughan et al. [2009] introduced a model describing IS based
on prerequisites, challenges, benefits, practices of IS regarding developed software
products, and the processes. The model does not present the elements IS is composed of.

Each of the mentioned models delivers a specific perspective on IS but none describes
which elements constitute IS or distinguish it from other development approaches. In
Section 3 we will present a theoretical model closing this gap.

Classification Framework. We are not the first to present a classification framework
of IS. Gurbani et al. [2010] introduced a classification model differentiating between
infrastructure-based IS where a central group provides IS infrastructure and parties
within the organization can run their own IS projects and project-specific IS where
one often strategically important IS project is developed. Stol et al. [2014] classified
IS programs of nine organizations according to this model. They found infrastructure-
based IS to be more prevalent than project-specific IS.

Lindman et al. [2013] introduced a model distinguishing between private-market IS
where organizational units can place software components for sale at an internal IS
market and local-library IS where the use of components is free.

We integrated the models of Gurbani et al. [2010] and Lindman et al. [2013] into our
IS classification framework in Section 4.

Benefits and Challenges of IS Adoption. Most of the surveyed publications reported
benefits and challenges of IS adoption in the context of their case organizations. How-
ever, we identified two publications that focused on benefits and challenges.

Stol et al. [2011] developed a theory of IS adoption challenges from open source
literature and a case study at an organization that adopted IS. They identified problems
regarding component selection, documentation, support and maintenance, integration
and architecture, and migration and usage.

Riehle et al. [2015] performed a multiple-case case study at three organizations
adopting IS in a software product line setup. Riehle et al. [2015] found improved col-
laboration and knowledge sharing in IS that benefits component providers and reusers
and finally results in improved development efficiency. They presented a model of adop-
tion challenges that describes problems with developers, product unit managers, and
expected problems with component quality, pilot projects, and development processes.

Our models of IS benefits (Section 5) and challenges of IS adoption (Section 6) sum-
marize the findings of all the surveyed literature including Stol et al. [2011] and Riehle
et al. [2015] and are of higher generality.

2. RESEARCH METHOD

We compiled this survey in two phases. First, in the literature selection phase, we
identified relevant IS literature. Second, in the literature analysis phase, we analyzed
and systematically arranged the literature. We did not execute these phases strictly se-
quentially but repeated literature selection multiple times after starting the literature
analysis to also cover newer publications.

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:4 M. Capraro and D. Riehle

Fig. 1. Inner source related publications over time.

2.1. Literature Selection

For identifying the relevant literature, we searched for literature by phrases using
Google Scholar, the ACM digital library, and IEEE Xplore. We utilized a variety of
phrases and combinations including the following:

—inner source, internal open source, firm-internal open source, in-house open source,
inside open source, hybrid open source (regarding coordinated IS efforts);

—social collaboration, open collaboration, social coding (broader context of open collab-
oration within organizations).

We focused on publications in the field of computer science, information systems, and
software engineering. As the body of literature regarding IS is smaller compared to
more established development methods, it was not necessary to define more specific
keywords. Subsequently, we manually determined whether a publication addresses
IS by reading abstracts or the full publication. For the publications that were found
to discuss IS, we searched for other publications of the same authors. We performed
“snowballing” (transitively checking forward and backward citations) until the popula-
tion of literature was exhausted. 43 publications were found that discuss IS. Iteratively,
we classified the literature based on the discussed IS programs (with one paper pos-
sibly discussing more than one IS program). Appendix C presents an overview of the
classified literature.

2.2. Resulting Literature

Our literature collection resulted in a total of 43 publications regarding IS. We identified
conference papers (12), book chapters (7), journal articles (6), technical reports (5),
workshop papers (3), and articles published in other venues (10). Eight nonscientific
articles (blog entries, magazines) were cited by the publications or found relevant for
this survey. Figure 1 shows the number of IS publications in journals, conferences,
and other venues per year. For completeness, it also shows nonscientific literature
as supplementary materials. A steady stream of publications can be observed, with
the exception of 2003 and 2004, when nothing was contributed. A majority of the
identified literature were case studies or reports regarding specific IS programs (27).
The surveyed literature reports about at least 16 organizations utilizing IS. Figure 2
shows the amount of literature regarding each organization ordered by the amount
of scientific publications. Supplementary material and nonscientific publications are
indicated by hachured filling. Only six organizations were discussed more than once in
scientific literature. GlobalSoft is a pseudonym for one organization whose name was
not disclosed by the authors of the surveyed papers.

Five organizations did not have a significant impact on our survey study and are
marked with an asterisk (*). Literature only allowed superficial insights into the IS
programs at DLR [Schreiber et al. 2014] and Kitware [Martin and Hoffman 2007]. At
Neopost and Rolls-Royce, no case studies were performed. Stol et al. [2014] performed

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:5

Fig. 2. Inner source related publications by organization.

an assessment of these demonstrating nine factors of IS adoption they have identified.
Regarding Ericsson, Torkar et al. [2011] only analyzed the process alignment of Erics-
son development and open source processes in preparation of IS adoption. An overview
of the surveyed literature and the known IS programs are given in Appendix C. For
further analyses we focus on the organizations (and their respective IS programs) that
are not marked with an asterisk. Table I summarizes the resulting 13 IS programs
that we considered for the survey.

2.3. Literature Analysis

Elements of Inner Source. One of this article’s contributions is a theoretical model of
elements that constitute IS. To identify these elements, we utilized inductive theory
generation (a method for analysis of qualitative data) by Thomas [2006] using the
surveyed literature as input data. Inductive theory generation required us to code
segments within all considered publications into categories. This process is called a
‘coding process’.

The coding process suggested by Thomas [2006] consists of five steps: Initially, we
familiarized ourselves with the literature (1) and subsequently identified and labeled
text segments with categories related to our objective of identifying elements that
constitute IS (2). These categories then were grouped by common themes (3). Finally, we
reduced the amount of categories by reducing overlap and redundancy among them (4)
and discarded categories with little importance (5). We used the software tool MaxQDA1

for this coding.
This process resulted in a hierarchical arrangement of codes (a so called “code sys-

tem”) with four top-level categories, lower-level categories belonging to these categories,
and links expressing which text segments were labeled to belong to these categories.
The left side of Figure 3 shows an excerpt of an earlier iteration of the code system.
We transferred this code system into our model of elements of IS (Section 3). The re-
sulting model is a qualitative model. Contrary to quantitative models that represent
or predict phenomena mathematically, qualitative models express concepts and their
relationships.

Classification Framework. This article contributes a classification framework for
IS programs and projects. During the third and fourth phases of the coding process
regarding the elements of IS, we found categories that contradicted each other. For
example, some organizations internally opened all their source code for IS, while others
selected specific components to be inner-sourced. These categories were obviously not

1MaxQDA is a proprietary software tool that supports the coding process in qualitative data analysis. Further
information on MaxQDA can be found at http://www.maxqda.com.

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

http://www.maxqda.com

67:6 M. Capraro and D. Riehle

Table I. Overview of Organizations Using IS

fit to describe general elements of IS. However, they can serve to describe variation
points of IS. We integrated both the contradicting categories and classifications from
known literature into our classification framework presented in Section 4.

Benefits and Challenges of IS Adoption. For developing models of IS benefits (Sec-
tion 5) and challenges of IS adoption (Section 6) we identified benefits and challenges
reported in the surveyed literature and arranged them into groups. Similar to our
analyses regarding the elements of IS, the coding process delivered a hierarchical
code system regarding benefits and adoption challenges. From the code systems

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:7

Fig. 3. MaxQDA screenshot with excerpt of an early iteration of our code system regarding text segments.

we derived the qualitative models of IS benefits and adoption challenges. Figure 3
shows an excerpt of an earlier iteration of the resulting code system in MaxQDA.
The hierarchical code system can be seen on the left side of the image. The right side
shows all text segments in the surveyed literature that discuss a selected benefit (in
this example faster time-to-market).

3. IS DEFINITIONS AND ELEMENTS

Multiple organizations are using IS as part of their software development approach;
researchers performed studies regarding the phenomenon. The authors of the respec-
tive publications each based their studies on specific definitions of IS. A selection of
these definitions is presented in Appendix A.

3.1. IS Definitions

Dinkelacker et al. [2002]2 define IS as “the application of Open Source approach and
benefits to developers within the corporate environment.” The majority of definitions
in literature [Goldman and Gabriel 2005; Melian 2007; Wesselius 2008; Gaughan et al.
2009; Gurbani et al. 2010; Riehle and Kips 2012; Stol et al. 2014] are akin to this first
definition published by Dinkelacker et al. [2002] and share two characteristics:

(1) IS leverages practices from open source development.
(2) Contrary to open source, only a limited group of developers (employees of a specific

organization) can take part in the community.

The “software product [or component] that is developed within an IS context” is called
Inner Source Software (ISS) [Stol et al. 2011].

The surveyed literature distinguishes two units of analysis to analyze the IS phe-
nomenon: IS programs and projects. We define an IS program as follows:

An IS program is a coordinated effort of an organization to run and maintain one
or multiple IS projects.

Dinkelacker et al. [2002] first used the term while discussing HP’s corporate source
and collaborative development programs. Other examples for IS programs are IBM’s
internal open source bazaar and community source [Fox 2007; Vitharana et al. 2010],
Nokia’s iSource [Lindman et al. 2008], Microsoft’s CodeBox [Microsoft 2008], Google’s
common software repository [Whittaker et al. 2012], or the firm-internal open source
program around SAP forge [Riehle et al. 2009].

2Dinkelacker and Garg [2001] is a workshop paper with similar content as Dinkelacker et al. [2002]. We
omit citing the earlier version in the remainder of this article.

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:8 M. Capraro and D. Riehle

Fig. 4. Theoretical model of IS elements.

We define an IS project as follows:

An IS project is a software project with the goal to develop and maintain IS software.

An IS project does not have a fixed duration that is set prior to the project’s start.
Instead, IS projects are more akin to open source projects that do not have a defined
end date. As in open source, the name of the project is often also used to address the
ISS component. Example IS projects are listed in Appendix B.

The collection of all ISS components that are developed within the projects of an IS
program form its IS portfolio, which we define as follows:

An IS portfolio is the set of all ISS components that are developed and maintained
as part of an IS program.

The project-specific and program-wide perspective differ significantly from each other.
The view on an IS program as a whole focuses on an organization’s complete IS land-
scape. Contrarily, a project-specific view is focused on the surroundings of one specific
project, the involved parties, and their interests. Distinguishing between these per-
spectives but also considering both is crucial for understanding an organization’s IS
efforts.

Within this article, we will use the verb form to inner source as follows: To inner-
source a software component means to either develop or maintain a software component
using IS or to transition a software component such that it becomes an ISS component.

3.2. Theoretical Model of IS Elements

The discussed definitions define IS and the concepts surrounding it, but they do not
describe the elements it is composed of. Therefore, we present a qualitative model
characterizing IS based on four elements that have been extracted from the surveyed
literature.

Figure 4 shows an overview of our model of elements of IS. The elements in the model
are derived from the categories in the code system that resulted from the qualitative
data analysis as described in Section 2. The gray areas are the four elements of IS
(top-level categories of our code system regarding the elements of IS). The white boxes
(second-level categories) further specify the attributes of these elements. We identified
IS to be composed of four key elements:

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:9

(1) An open environment is created by opening up development artifacts, inviting ex-
ternal contributors, and establishing open communication.

(2) Shared cultural values are internalized by individuals within the organization.
(3) Empowered by the open environment and shared cultural values, communities

around software form.
(4) IS development practices are exercised by a project-specific or program-wide com-

munity. Such practices can be observed in the open source world as well.

The arrows in Figure 4 indicate the relationships between the elements of IS. The open
environment enables developers to form communities around software. The communi-
ties around software are shaped by shared cultural values and exercise IS development
practices.

3.2.1. Open Environment. IS embraces an open environment. We found this open envi-
ronment to be characterized by open communication, open development artifacts, and
openness of contribution. Openness includes the transparency of information and arti-
facts [Stol et al. 2014] but also the possibility for individuals to participate in projects
and communication outside their assigned projects or without a superior’s approval
[Riehle et al. 2009; Neus and Scherf 2005].

Open Communication. In the context of open source, Riehle [2015] defines open
communication to be public, written, complete, and archived. The surveyed literature
shows that open communication is an element of IS. Neus and Scherf [2005] suggest
open communication not only to be public, but also open for everybody to contribute to.
Melian [2007] discusses open communication in IS utilizing the framework by Clark
et al. [1991]. She found that open communication impacts all dimensions of communi-
cation their framework proposes.

IBM [Vitharana et al. 2010], HP [Melian et al. 2002], Google [Whittaker et al. 2012],
Philips [van der Linden 2013], Nokia [Lindman et al. 2010], and DTE Energy [Smith
and Garber-Brown 2007] utilize mailing lists to implement open communication. Smith
and Garber-Brown [2007] summarizes the benefits of open communication with mail-
ing lists: “[Most community members] preferred to use the mailing lists because the
lists allowed them to multitask between receiving help and performing project duties.”
Martin and Hoffman [2007] summarize that “mailing lists have proven to be an in-
dispensable form of communication between software developers and users.” Forums
are an alternative implementation of open communication [Microsoft 2008; Lindman
et al. 2010; Vitharana et al. 2010]. Generally, informal communication channels can be
observed in IS [Stol et al. 2014].

However, the surveyed publications do not indicate how complete the open commu-
nication was. Contrary to open source, some IS developers may still share a physical
working space. We assume this can decrease the completeness of open communication.
Smith and Garber-Brown [2007] suggest focusing on open (electronic) communication
means whenever possible.

Open Development Artifacts. IS is characterized by the openness of development arti-
facts, for example, source code or documentation. This openness has two consequences.

First, the open artifacts can be read and reused. IS grants developers “universal
access to development artifacts” [Stol et al. 2014]. All organizations in the surveyed
literature (with the exception of Kitware [Martin and Hoffman 2007]) opened parts or
all of their source code repositories internally. Melian et al. [2002] of HP summarizes:
“From the open source development paradigm, [IS] borrows the notion of making source
code available freely (openly) for all members of the community.” To make source code
easily usable as quick as possible, IS, like open source, encourages early and frequent
releases of new incremental versions of ISS components [van der Linden 2009; Gurbani

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:10 M. Capraro and D. Riehle

et al. 2006; Martin and Lippold 2011; Stol et al. 2014]. Internally opened source code
is the most obvious but not the only form of open development artifacts [Robbins
2005]. Openness of source code alone is not sufficient for enabling collaboration within
a community. Also, the information and knowledge regarding IS projects needs to
be accessible to the community’s members. van der Linden [2013] concludes that “to
support this inner [source] collaboration, the platform documentation should be open.
[. . .] Consequently [. . .] relevant documentation was published on an internal website,
which was easily accessible for all development departments.” An important side effect
of opening up work artifacts is that not only the artifacts themselves but also the work
performed on them is publicized. This enables individuals to infer other individuals’
and organizational units’ goals [Dabbish et al. 2012].

Secondly, in addition to reading and using open development artifacts, developers
can contribute changes toward code and documentation even if the project is outside
of their organizational unit’s responsibility. Riehle et al. [2009] describe that it was a
key design element of the internal forge at the center of their IS program to reduce
“the technical and practical hurdle of joining and becoming active in a project” and
consequently enhance the projects’ openness for contributions. Developers are able to
send patches (small packages of code changes) with bug fixes, new features, or other
additions to the owners of an ISS component [Gurbani et al. 2010; van der Linden 2013].
As in open source, the owners review the patch and decide based on its merit whether
to reject or accept it [Gurbani et al. 2005, 2006; Riehle et al. 2009].3 Once a patch has
been accepted, it is the IS project’s responsibility to maintain this portion of the code.
As in open source, individuals can be granted the right to commit patches themselves
(so called committers) without going through this review process. At Google, developers
that have proven defined skills get write access to a selected subset of the IS portfolio
[Whittaker et al. 2012].

3.2.2. Shared Cultural Values. In the IS programs in the surveyed literature, specific
cultural values are lived. IS embraces a program-wide identity and the values of open
collaboration. While culture is not as easily visible as processes or organizational struc-
ture, we found shared cultural values to be an important element of IS.

Program-Wide Identity. Developers of an organization do not exclusively identify
with their organization and its goals. Often developers also identify with their team or
with the specific product or component they work on. We observed that developers in
IS share a program-wide or even organization-wide identity. They identify with the IS
program, the IS projects they are involved in, and the respective IS community.

Such a program-wide identity is desirable from an organization’s perspective: The
focus of IS communities is not the local success of one individual, team, or organiza-
tional unit but the success of the whole IS program or even organization [Wesselius
2008; Martin and Lippold 2011]. To embrace a program-wide identity, organizations
undertook efforts (e.g., trainings and seminars) to establish trust among emplyoees
from different organizational units [Melian et al. 2002; Martin and Lippold 2011].
Melian et al. [2002] summarize that “it is of great importance to establish and build
strong working relationships and trust, especially when the work teams are globally
distributed.”

Values of Open Collaboration. IS implements the three values of open collaboration
as defined by Riehle et al. [2009]: egalitarianism, meritocracy, and self-organization.

3Gurbani et al. [2005] is a workshop paper with similar content as Gurbani et al. [2006]. We omit the earlier
iteration for the remainder of this article.

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:11

IS projects are egalitarian. Every contributor who is willing to help an IS project
is typically welcome. Contributions to IS projects are typically judged meritocratically
based on the value they bring to the project. Meritocracy can also be enabled by open
communication as decisions are discussed publicly. To adopt IS, an organization does
not necessarily have to become completely self-organizing. Still, IS allows individuals,
organizational units, and project communities a higher degree of self-organization
Riehle et al. [2009].

3.2.3. Communities around Software. Communities around software are a key element
of IS. Wesselius [2008] of Philips emphasizes the important role of the community
element: “Companies using the ISS approach essentially establish an OSS [open source]
community within the confines of their organization.” Organizations have implemented
program-wide [Dinkelacker et al. 2002; Smith and Garber-Brown 2007; Microsoft 2008]
and project-specific IS communities [Melian et al. 2002; Gurbani et al. 2006, 2010;
Martin and Hoffman 2007; Riehle et al. 2009; van der Linden 2013].

In open source and IS research, the concept of community has been defined in var-
ious ways that are not always compatible to one another and have differing levels of
precision. As part of this survey article, we do not aim to resolve this deficiency. For
the remainder of this article, we define a community broadly as an informal organi-
zation of individuals that communicate and collaborate with each other. In IS, these
communities cross organizational unit boundaries.

Tamburri et al. [2013] identified 13 different types of communities and social net-
works relevant in a software engineering context. We suggest future research to identify
which of these types project-specific and program-wide IS communities represent. We
encourage researchers to evaluate how applicable community management practices
of the identified community types are to communities in IS.

Program-Wide Communities. In IS, not only the project-specific but also the program-
or organization-wide view is important. While project-specific communities form
around one specific IS project, program-wide communities exist that form around the
whole IS program. The participants of this community are a joint set of the partici-
pants in project-specific communities. Microsoft [Microsoft 2008] and HP [Dinkelacker
et al. 2002] observed the formation of program-wide communities. At DTE Energy
[Smith and Garber-Brown 2007] and Kitware [Martin and Hoffman 2007] program-
wide communities were stimulated to enable knowledge exchange and networking
among individuals within the organization.

Project-Specific Communities. The main focus of participants in project-specific
communities is to collaboratively develop, use, or contribute to one specific IS
project. Project-specific communities formed around Lucent’s SIP transaction manager
[Gurbani et al. 2006, 2010], SAP’s mobile retail prototype [Riehle et al. 2009], Philips’
medical imaging components [Wesselius 2008; van der Linden 2009; van der Linden
et al. 2009], and projects at HP [Melian et al. 2002] and Microsoft [Microsoft 2008].
Within an IS program, multiple project-specific communities can exist. Project-specific
communities can also be found in the open source world (e.g., the communities around
specific open source projects like JUnit or Libre Office).

3.2.4. IS Development Practices. Based on the surveyed literature, we identified four IS
development practices (participatory reuse, self-selection of tasks, volunteering, and
collaborative development projects). The existence of all IS development practices is
not a necessary condition for a development endeavor to be called IS. We believe that
more than the identified IS development practices can be implemented in IS programs.
Future research will have to identify further development practices by observing more
IS programs or finding potential new practices from the open source world.

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:12 M. Capraro and D. Riehle

Participatory Reuse. Participatory reuse is a form of software reuse in which reusers
participate in developing and maintaining the software they reuse [Vitharana et al.
2010]. The term was coined by Vitharana et al. to describe a “scenario in which po-
tential reusers participate in the entire development process (e.g., analysis, design,
development, testing) to ensure that the project assets meet their reuse needs.” Reuse
evolves from a one-way street where existing software is only consumed into a two-way
street where developers contribute to the software they reuse [Wesselius 2008; van
der Linden 2013]. Individuals can contribute patches to software components they are
reusing as part of their work in order to make them fit for their particular reuse needs.
Individuals do not self-select which component to contribute to based on their interest
or qualification.

Participatory reuse can also be found in the open source world. Wesselius [2008] sum-
marizes: “In [open source], a community works together to develop software. Because
the software’s users are part of the community, they can add the assets they need.”

Self-Selection of Tasks. Self-selection of tasks allows developers to choose by them-
selves which development work to perform. To enable self-selection of tasks, Google
implemented the “20% time” [Hamel and Breen 2007; Whittaker et al. 2012]. The 20%
time allows employees to use 20% of their work time to participate on projects outside
the scope of their everyday work [Hamel and Breen 2007; Whittaker et al. 2012]. A
Google employee [Google-Blog 2006] reports that “The 20 percent time is a well-known
part of our philosophy here, enabling engineers to spend one day a week working on
projects that aren’t necessarily in our job descriptions.” The organization-wide open
code repository of Google [Whittaker et al. 2012] enables developers to use this time
for contributions to open projects, turning them into IS projects.

Volunteering. Organizations reported about volunteering developers that were moti-
vated to contribute to IS projects in their spare time for fun, to develop their professional
skills or to gain reputation [Gurbani et al. 2006; Riehle et al. 2009; Stol et al. 2014].
Riehle et al. [2009] summarize: “Even with traditional top-down structured software
development organizations, [IS] projects can gather internal volunteer contributions.
[. . .] Volunteers are motivated to contribute, because it is their decision to contribute
and they can gain reputation and visibility within the company outside their current
primary projects.”

Volunteering differs from self-selection of tasks. While in self-selection of tasks de-
velopers use working time to perform self-selected programming tasks, volunteers use
their spare time for contributing to the organization’s IS projects.

Collaborative Development Projects. The majority of the presented development prac-
tices is based on developers contributing code to an IS project via patches. These can
either be rejected or accepted by the owners of an ISS component. In open source, it
can be observed that a core team of developers creates a component collaboratively. A
bazaar-style development as described by Raymond [1999] does not happen instantly
but the core team develops the component and shares its ownership. Later, bazaar-
style practices, for example, based on contributing patches, can occur in such a project
[Senyard and Michlmayr 2004].

The surveyed literature reported on similar practices in IS. Organizations performed
collaborative development projects in which they joined resources from different orga-
nizational units to develop an ISS component these organizational units had a shared
interest in:

“GlobalSoft adopted the concept of so-called collaborative development projects. [. . .]
In practice, this resulted in temporary, virtual teams that work together [. . .] to

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:13

Fig. 5. Classification framework of IS programs and projects.

develop a new (or enrich an existing) component [. . .].” (Höst et al. [2014] regarding
GlobalSoft)

“Our current approach is to start codevelopment [collaborative development]
projects in which systems-group and component-group developers work together to
create new assets that are relevant to the participating systems group.” (Wesselius
[2008] regarding Philips)

In collaborative development projects, the involved parties have more influence in the
IS projects than contributors exercising other IS development practices.

4. CLASSIFICATION FRAMEWORK FOR IS

We combined findings from the surveyed literature with known IS classification models
to derive our classification framework for IS. This classification framework is composed
of one classification framework for IS programs and one for IS projects.

We found that IS programs differ in at least three dimensions (prevalence, degree
of self-organization, and internal economics). Our classification framework for IS pro-
grams delivers a multilabel classification of IS programs based on these dimensions.
For each of the three dimensions, the framework lays out possible classes. An IS pro-
gram belongs to exactly one class per dimension (resulting in a total of three classes
per IS program). Our classification framework for IS projects works analogously to the
classification framework for IS programs. We found IS projects to differ in at least two
dimensions (governance and objective).

Figure 5 gives an overview of the classification framework, its dimensions, and which
classes an IS program or project can fall into for each of the dimensions. Each column
represents one dimension. The possible classes are shown as gray boxes. The light-gray
text under each column indicates how it was derived.

We believe the space of possible IS programs and projects not to be limited to the
identified dimensions. We suggest future research to identify additional dimensions or
classes of IS programs and projects.

4.1. Classification of IS Programs

The classification framework of IS programs is based on the three dimensions: preva-
lence, degree of self-organization, and internal economics. The prevalence dimension
is based on the classification model presented by Gurbani et al. [2010]. As a result of
our qualitative data analysis of the surveyed literature (primarily the surveyed case
studies), we extended their model to form the prevalence dimension. The internal eco-
nomics dimension integrated the classification model of Lindman et al. [2013] into our

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:14 M. Capraro and D. Riehle

framework. The different degrees of self-organization were derived solely from qualita-
tive data analysis. The next paragraphs discuss these three dimensions in more detail.
Figure 5 at the beginning of the paragraph also gives an overview of the classification
framework and the classes of IS programs for each dimension.

4.1.1. Prevalence. Gurbani et al. [2010] presented a classification of IS programs based
on their prevalence within the organization. They distinguish project-specific and
infrastructure-based IS programs. Project-specific IS programs are focused on one
specific IS project that is usually a primary technology of the organization, of high
strategic or operative importance, or has many stakeholders relying on it. In a project-
specific IS program the IS project provides the development infrastructure. Contrary
to this, in infrastructure-based IS programs, the organization provides development
infrastructure and enables individuals or organizational units to host their IS projects
on it. In an infrastructure-based IS program, IS has a higher prevalence within the
organization [Gurbani et al. 2010].

Based on the surveyed case studies we found that infrastructure-based IS programs
can be differentiated further. A fraction of the infrastructure-based IS programs inner-
sourced only some components, while in others all of the organization’s software com-
ponents were inner-sourced. We call these IS programs selective and universal IS pro-
grams. Consequently, we extend the classification by Gurbani et al. [2010] and consider
the following three classes an IS program’s prevalence:

—Universal: All of the organization’s software artifacts are publicized as an ISS com-
ponent. There is no software component that is not inner-sourced.

—Selective: Only selected software artifacts are publicized as ISS. The remaining
software components are not inner-sourced. Consequently, many IS projects exist.

—Project-Specific [Gurbani et al. 2010]: The majority of software components are not
inner-sourced. Only a specific IS project is run within the IS program.

Of the three presented variants, implementing a universal IS program has the largest
impact on the organization: Every software component is made internally available.

An organization running a universal IS program may decide to exclude a few com-
ponents from the IS portfolio for idiosyncratic reasons (for example, due to security or
intellectual property concerns). We suggest to still classify such IS programs as uni-
versal IS if the vast majority of software is ISS and components are only excluded from
the IS portfolio on a strictly exceptional basis.

4.1.2. Degree of Self-Organization. The IS programs described by the surveyed literature
grant individuals a varying degree of self-organization by allowing or not allowing them
to self-responsibly choose which ISS components to reuse and/or which tasks within
the IS program to work on. In the surveyed literature, we found the following three
classes:

—Free task choice and free component choice: Individuals can choose which compo-
nents to reuse and (at least a fraction of) their everyday tasks. Consequently, they
not only contribute to ISS components used as part of their assigned everyday work.
They are also enabled to contribute to ISS components that match their personal
interests or expertise.

—Assigned Tasks and free component choice: Tasks are assigned to the individual de-
veloper in a traditional way. However, individuals can choose which ISS components
to reuse for finishing their assigned tasks. No corset forces an individual to reuse
one specific ISS component.

—Assigned Tasks and Assigned Components: The elements of IS (see Section 3) are
implemented. However, no other freedoms are granted to individuals. They have no

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:15

right to freely choose which ISS components to reuse as part of their work. The used
components are predefined by an existing corset (e.g., a software product line setup).

We did not find any indication of a fourth class free task choice and assigned components
in the surveyed literature.

4.1.3. Internal Economics. We integrate the classification of IS programs by Lindman
et al. [2013] into our classification framework. They classify IS programs based on the
IS program’s internal economics into the following two classes:

—Local-library: Every party within the program-wide community can reuse the ISS
asset free of charge. Contributions to the IS portfolio are not reimbursed or specially
expedited [Lindman et al. 2013].

—Private-market: Internal market mechanisms are in place to regulate and steer
contributions and reuse [Lindman et al. 2013].

One could argue that an IS program with a private-market is not an IS program at
all, as it potentially hinders reuse and collaboration. However, in our experience some
organizations implement complex cost allocation schemes which make it necessary to
use private-market IS programs. Lindman et al. [2013] summarizes that a private-
market “does present some benefits of open innovation (ideas flowing freely, quick
diffusion of inventions to enable incremental innovation, reuse) while addressing the
appropriation in a fairly practical manner.”

4.2. Classification of IS Projects

We classify IS projects based on two dimensions: The governance dimension describes
who is responsible for the project and the developed ISS component. The objective di-
mension describes what the project is aiming to achieve. Our qualitative data analysis
of the surveyed literature (primarily the surveyed case studies) indicated IS projects’
variations in both dimensions. For the governance dimension, the classes result exclu-
sively from our qualitative data analysis. For the objective dimension, we integrated a
project classification model from the open source world [Nakakoji et al. 2002] into our
framework.

4.2.1. Governance. Governance of IS projects and regard of ISS components were im-
plemented in different ways by the IS projects described in the literature. As a result of
our qualitative data analysis, we identified three classes that describe how governance
of IS projects was implemented. We observed governance by a single organizational
unit, multiple organizational units, and all organizational units.

—Single organizational unit: The IS project is explicitly governed by one single orga-
nizational unit.

—Multiple organizational units (governance board): The IS project is governed by a
board formed of multiple organizational units.

—All organizational units: The IS project is not governed by a select group of organiza-
tional units. The ISS component is seen as a commodity. Governance and ownership
is shared between all organizational units in the organization.

Both governance by a single or by a multiple organizational unit require an explicit
proclamation of responsible organizational units for the outcomes of an IS project. We
believe collaborative development projects as described in Section 3 to typically result
in governance of an IS project being executed by multiple organizational units.

Gurbani et al. [2010] reported on roles they implemented to enable the governance
of a IS project governed by multiple organizational units. They defined explicit

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:16 M. Capraro and D. Riehle

management roles (project managers, software architects) and roles for mediation
between the core team of the IS project and its users.

In Stellman and Greene [2009], Auke Jilderda describes that explicitly defined own-
ership (and consequently governance by these owners) is an important attribute of
each ISS component. He argues that some entity should always have a final say about
the development direction or on whether to accept a contribution. However, Whittaker
et al. [2012] and Linåker et al. [2014] discussed IS projects that were not governed
by select organizational units but by all organizational units equally. Whittaker et al.
[2012] uses the term “shared” components or libraries to refer to ISS components re-
sulting from such projects. The surveyed literature did not present examples of IS
projects governed by all organizational units. However, the literature discussed the
characteristics of such projects.

Linåker et al. [2014] discuss that such IS projects “do not need any administration
or anyone responsible for the development of the component.”

At Google, multiple such projects exist [Whittaker et al. 2012]. While the governance
of these projects is independent of particular organizational units, a developer has to
follow defined rules when contributing to these projects [Whittaker et al. 2012]. Before
performing a modification, a committee needs to certify the developer’s proficiency in
the relevant programming languages [Whittaker et al. 2012]. Strict requirements to
test the coverage of shared components and a mandatory review process are in place to
mitigate quality degregation [Whittaker et al. 2012]. Also, a developer is responsible
for adapting other components that depend on the modified component if necessary
[Whittaker et al. 2012].

Still, IS projects governed by all organizational units equally are not broadly re-
searched. It is unclear how conflicts can be resolved effectively, which components are
fit to be governed in such a way, or how software evolution can be managed in such
projects. We suggest future research to address these issues.

4.2.2. Objective. IS projects described in literature served different objectives. In the
open source context, Nakakoji et al. [2002] identified three different classes of projects
depending on the project’s primary objectives. Based on the surveyed literature, we
found their objectives to be fit for classifying IS projects as well. In analogy to Nakakoji
et al. [2002], we use the following three classes to express the objectives of an IS project:

—Exploration-oriented: The IS project aims to make innovation accessible to the whole
program-wide IS community. Nakakoji et al. [2002] note that due to their “epistemic
nature” such projects usually have high quality requirements. Contribution of feed-
back (e.g., via mailing lists) is particularly important for an exploration-oriented
project.

—Utility-oriented: The IS project aims to fill an immediate need in functionality. Typi-
cally, the developers of the initial code are an individual or a small party who “cannot
find an existing program that fulfills their needs completely” [Nakakoji et al. 2002].
Utility-oriented projects usually have only a small project-specific community or their
community exists as part of a larger community (e.g., if the utility-oriented project
is part of the ecosystem of another IS project).

—Service-oriented: The IS project’s main goal is to provide “stable and robust services”
to end-users of the ISS software [Nakakoji et al. 2002]. Service-oriented projects
typically produce business critical ISS software components, have high quality re-
quirements, and are conservative against rapid changes [Nakakoji et al. 2002].

An open source project’s objective can change during its lifecycle [Nakakoji et al. 2002].
As in open source, an IS project can evolve and its objective change. Lucent’s SIP
transaction manager [Gurbani et al. 2006, 2010] started as an exploration-oriented IS

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:17

Table II. Classification of IS Programs

project. Its aim was to make innovation (in the form of the implementation of a new
telephony protocol) available within the organization. Later, it evolved into a service-
oriented IS project as many products of Lucent started to rely on it [Gurbani et al.
2006].

4.3. Application of the Framework

In this section, we apply the classification framework to the known instances of IS
programs and projects. The presented classification framework was derived from the
IS programs and projects in surveyed literature. Consequently, the application of the
model to the same set of programs and projects cannot serve as validation. The appli-
cation of the framework serves as a demonstration of its capabilities.

4.3.1. Classification of IS Programs. We classified 12 of the IS programs introduced in
Section 2 according to our classification framework for IS programs. We first apply
our classification framework of IS programs and subsequently lay out which of the IS
development practices were implemented.

By Using the Classification Framework. Table II presents how each of the known IS
programs is classified according to our classification framework for IS programs. The
different classes of the prevalence dimension are expressed as columns; the different
classes of the degree of self-organization dimension are expressed as rows. Table II does
not show the market-mechanisms dimension as we did not find an implementation of
a private-market IS program. However, the private-market idea was discussed in the
context of Nokia [Lindman et al. 2013] and Philips [Wesselius 2008; Lindman et al.
2013]. The roots of Philips’ IS program come close to a private-market as organizational
units were required to pay a fee for reusing a component [Wesselius 2008]. However,
contributions from outsiders neither occurred nor were they considered by the market-
mechanisms in this early phase.

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:18 M. Capraro and D. Riehle

Regarding the degree of self-organization, we observed IS programs with assigned
tasks and components (two), assigned tasks and free component choice (nine), and free
task and component choice (one). IS programs with assigned tasks and components
can be found at Philips [van der Linden 2009, 2013; van der Linden et al. 2009]
and GlobalSoft [Höst et al. 2014] who use IS in the context of their software product
line development. IS programs with free component choice but assigned tasks were
implemented at SAP [Riehle et al. 2009], Microsoft [2008], and other organizations
(see Section 4). Google implemented free choice of components and (to a certain degree)
tasks. They allow developers to use 20% of their time for performing work they are
interested in or deem necessary [Whittaker et al. 2012; Hamel and Breen 2007]. While
Google employees may use it to kick off a new project, it is also used for contributing
to IS projects [Google-Blog 2006].

In the prevalence dimension, we observed selective (eight), project-specific (three),
and universal (two) IS programs. Google’s shared source code repository [Whittaker
et al. 2012] is an example of a universal IS program. Also, DTE Energy reported to
have opened up their repositories to enable “all developers to see all code across the
enterprise” [Smith and Garber-Brown 2007]. SAP’s internal software forge [Riehle et al.
2009] and IBM’s community source [Vitharana et al. 2010] are examples for selective IS
programs. Only selected components are developed using IS. Nokia’s iSource program
is an instance of a selective IS program. As iSource is the standard platform for all
new projects (using a specific source code management system) [Lindman et al. 2010,
2013], the iSource program could become a universal IS program gradually. For the
department of defense’s Forge.mil program [Martin and Lippold 2011] we were not able
to determine which degree of self-organization and internal economics they implement.

Table II shows that most of the surveyed organizations implemented selective (eight),
and local-library (10) IS programs with assigned tasks and free component choice
(nine). IS programs with assigned tasks and components (two) or free task choice (one)
as well as universal IS programs (two) have a low prevalence.

Despite the few instances, due to the high prevalence of static dependencies between
organizational units in the software industry (e.g., due to product line engineering), we
assume IS programs with assigned tasks and components to be of high relevance for
the software industry. At least one additional organization (Siemens) that implemented
software product lines indicated that IS can benefit their development [Bartholdt and
Becker 2012]. We hypothesize that the low prevalence of IS programs with free task
choice is related to the unclear benefits and absence of proven steering mechanisms for
such IS programs. We suggest future research on benefits and steering mechanisms.

Two out of the three project-specific IS programs also had assigned tasks and com-
ponents. In the cases of Philips [van der Linden 2013] and GlobalSoft [Stol 2011;
Höst et al. 2014], these IS programs were used to augment software product line de-
velopment and mitigate challenges in requirements elicitation, feature prioritization,
and bottlenecks in the platform organizational units. However, IS programs with free
component choice can be project-specific as well. Lucent only developed one ISS com-
ponent. Still, there are no reports that this component was imposed on the developers.
Organizational units were able to decide for themselves whether or not to use the ISS
component [Gurbani et al. 2006, 2010].

Based on the information in the surveyed literature, we were only able to classify
a small amount of IS programs (12). This leads to two problems. First, we were not
able to identify IS programs for all possible combinations of classes. Consequently,
Table II contains empty cells. However, we did find no indication that the combinations
with no example IS program are invalid. Secondly, the small sample size does not
allow us to draw conclusions about correlations between classes of IS programs. We
suspect that more self-organization and a higher prevalence of an IS program could be

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:19

Table III. Exercised IS Development Practice

correlated. A potential cause is that organizations that take the risk of rolling out IS
on a broader scope (higher prevalence) are also more aware of the potential benefits of
a higher degree of self-organization. For the surveyed IS programs, the prevalence and
degree of self-organization dimension show higher diversity. Regarding the internal
economics dimension we observed less diversity. We suggest further research to identify
and classify additional IS programs and explore correlations between classes of IS
programs in the different dimensions.

By IS Development Practices Exercised. IS programs not only differ on the dimensions
of our classification framework but also by the IS development practices that are
exercised within the programs. Table III summarizes the IS development practices
exercised within 13 IS programs. Each row represents an IS program. Each column
represents one development practice. In a case in which a development practice is
reported to be exercised within an IS program, the specific cell is marked with a check
mark. In a case in which a cell is not marked, it does not necessarily mean that the
specific development practice is not exercised within the IS program. It solely means
that literature regarding the IS program did not report about the practice. We were
not able to infer sufficient information on the practices exercised at IBM’s Internal
Open Source Bazaar [Fox 2007], HP’s Corporate Source [Dinkelacker et al. 2002], and
Forge.mil [Martin and Lippold 2011]. The literature regarding these three IS programs
did not report enough specifics to allow us to identify practices.

The individuals within the considered 10 IS programs exercised participatory reuse
(nine) and collaborative development projects (five). Also, we observed volunteering
(three) and self-selection of tasks (one).

Participatory reuse is the most prevalent development practice (8/10). Only Google
and SAP do not report about participatory reuse. Giving the size of the Google organi-
zation and the fact that they implement universal IS, we conclude that participatory
reuse is exercised with a high likelihood. None of the considered literature reported

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:20 M. Capraro and D. Riehle

Table IV. Classification of IS Projects

about collaborative development projects in the context of IS programs with free choice
of tasks and components. We acknowledge the strong differences between these prac-
tices but do not assume them to be exclusive.

Initially, we were assuming volunteering and self-selection of tasks to only happen
in universal or selective IS programs. This assumption is invalidated by the findings of
Gurbani et al. [2006] who observed volunteering at Lucent’s project-specific IS program.

4.3.2. Classification of IS Projects. We identified six IS projects with sufficiently detailed
reports. For one of these projects (Lucent [Gurbani et al. 2010]) at least two distinct
phases can be extracted and are listed separately. For the other nine IS programs,
literature did not report about specific projects. Table IV summarizes the classification
of the six considered IS projects. The table’s construction is similar to Table II.

Regarding the governance dimension, literature reported projects governed by a sin-
gle organizational unit (four) and multiple organizational units (two). A specific project
without a governing organizational unit was not presented in literature. However, such
projects were implemented at Google [Whittaker et al. 2012]) and discussed in the con-
text of the case study by Linåker et al. [2014]. We suggest further exploratory research
on IS projects governed by all organizational units and the implications for software
quality and governance.

Regarding the objectives, the surveyed literature reported service-oriented (four),
exploration-oriented (two), and utility-oriented (one) projects. Nakakoji et al. [2002]
discussed that exploration- and utility-oriented open source projects are typically gov-
erned by a single organizational unit and evolve into service-oriented projects owned
by multiple organizational units. This could be true for IS projects as well and we
suggest future research: Lucent’s SIP server changed from being governed by one to
being governed by multiple organizational units after becoming a service-oriented IS
project. Microsoft’s Code Box project discussed the need to empower the contributors

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:21

Table V. Seven Benefits of IS

and users of the service-oriented project further [Microsoft 2008]. The service-oriented
project at GlobalSoft implemented a steering committee [Stol 2011; Höst et al. 2014].

Based on the information in the surveyed literature, we were only able to classify
a small amount of IS projects (six). Consequently, Table IV contains empty cells as
we were not able to identify example IS projects for every possible combination of IS
classes. We found no indication in the surveyed literature that combinations without
an example IS project are invalid.

The surveyed IS projects indicated a relationship between the class of an IS project
and the exercised development practices that are common in the IS program hosting it:
The development practices volunteering or self-selection of tasks were observed in all IS
programs running exploration-oriented IS projects. We assume innovative exploration-
oriented projects to have a higher potential to attract interested individuals. Project-
specific IS programs often ran service-oriented projects (three/four). Gurbani et al.
[2010] describe that focusing IS efforts on one specific project is a beneficial way to deal
with critical assets. Also, all IS programs in the surveyed literature with assigned tasks
and components implemented service-oriented projects. We suggest further research
to find and classify additional IS projects and search for correlations between classes.

5. BENEFITS OF IS

We analyzed the surveyed literature following the method described in Section 2 to
develop a model of the benefits of IS. Literature reported about a variety of benefits
that IS has compared to traditional development methods. Table V gives an overview
of the seven identified benefits (top-level categories of our code system). Six of these
benefits aggregate more fine-grained benefits (lower-level categories).

The surveyed literature presented IS benefits from the idiosyncratic perspective
of different organizations. Some of the reports validated the observed IS benefits.
van der Linden et al. [2009] monitored Philips’ process metrics to measure a time-to-
market increase they attribute to IS. Riehle et al. [2009] performed a survey with SAP
developers to validate that IS helped them to overcome intraorganizational boundaries.
However, most of the surveyed literature neither validated the observed IS benefits
nor discussed their generalizability. IS benefits should be treated as observations,
not as generally valid truth. We suggest further research to validate the reported IS
benefits, evaluate their generalizability, and estimate the extent to which they affect
the organizations adopting IS.

5.1. More Efficient and Effective Development

IS can result in a more efficient and effective development by reducing time to market,
development cost, and generally increasing development efficiency [Riehle et al. 2015].

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:22 M. Capraro and D. Riehle

Faster Time-to-Market. IS enabled organizations to achieve a faster time to market.
Dinkelacker et al. [2002] and Riehle et al. [2015] describe “faster development schedules
with code leveraged among several products” as a benefit of IS. At Philips, it “led to time-
to-market reduction of at least 3 months” [van der Linden 2009]. Also, DTE Energy
experiences quicker time-to-market [Smith and Garber-Brown 2007]. Decreased time-
to-market is a result of outside resources becoming available to component providers
[Riehle et al. 2009] and shifting time lines by the possibility of using existing code and
features earlier [van der Linden 2013].

van der Linden [2013] attribute the faster time-to market to the possibility to make
earlier use of software that is not internally released yet: “Departments can already
start developing upon new features of the platform before it is completely tested. This
improves the time to market drastically.”

Reduced Development Cost. IS can reduce the cost for software development and
maintenance. HP [Dinkelacker et al. 2002; Melian and Mähring 2008], Lucent [Gurbani
et al. 2006], DTE Energy [Smith and Garber-Brown 2007], and Philips [Wesselius 2008]
reported a decrease in development costs. HP [Melian and Mähring 2008] experienced
and Neus and Scherf [2005] assume increased development efficiency.

5.2. Overcoming of Organizational Unit Boundaries

Boundaries between organizational units can become hard to cross in large organi-
zations. By creating an intraorganizational community, IS is a vehicle to overcome
such boundaries and raise awareness of company-wide activities and goals [Martin
and Aitken 2012]. At SAP, a majority of respondents (55/83) of a survey initiated by
the founders of their IS program reported that IS enabled them to gather an un-
derstanding of other organizational units’ work [Riehle et al. 2009]. IS facilitates an
improved organization-wide perspective and intraorganizational collaboration [Riehle
et al. 2015].

Cost and Risk Sharing Among Organizational Units. IS strengthens an organization-
wide focus by promoting cost and risk sharing between organizational units. Wesselius
[2008] describes his experience:

“It’s indeed the cost- and risk-sharing benefits that primarily drive our ISS com-
munity - and both benefits reflect our overall business goals.”

A result can be increased trust between organizational units.
Cost and risk sharing between organizational units can be achieved with collabo-

rative development projects where organizational units jointly incubate IS projects.
Each organizational unit supplies a fraction of the resources needed for the project.
Consequently, cost and risk are shared among the organizational units.

Collaboration across Organizational Unit Boundaries. IS enables collaboration
among the organizational unit boundaries to a degree not possible in traditional se-
tups [Vitharana et al. 2010; van der Linden 2013]. Collaborations among organizational
units’ boundaries are more flexible in IS, enabling one to quickly start, stop, and change
collaboration [van der Linden et al. 2009].

In IS programs with free choice of components or even free task choice, a developer
can quickly switch which ISS component to use or contribute to. In IS programs with
assigned tasks and components, reusing parties still have the chance to decide how
intensely and to which functional areas to contribute.

Program-Wide Information Exchange. Easy access to information spread over the
organization is one of the main principles of IS [van der Linden et al. 2009]. Vitharana
et al. [2010] of IBM report that “findings reveal that the greater openness [. . .] enhances

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:23

information sharing among a projects stakeholders.” IS lowers the transaction cost for
information [Neus and Scherf 2005]. Eased information exchange leads to an increased
awareness of organization-wide development efforts [Lindman et al. 2008].

5.3. More Successful Reuse

The surveyed literature reported IS’ openness to enhance firm internal software reuse.
DTE Energy observed IS to be a superior approach to embedding software reuse com-
pared to purely tool driven strategies [Smith and Garber-Brown 2007; Anthes 2005].
The awareness of other developer’s activities [Vitharana et al. 2010] and the availabil-
ity to pick up code on different levels of granularity [Whittaker et al. 2012] distinguish
IS from other approaches to software reuse.

With a growing IS portfolio, more code becomes openly available to be picked up for
reuse. Consequently, we believe selective or even universal IS programs to be more ben-
eficial for enabling organization-wide software reuse than project-specific IS programs.

Use of Competence Missing at Component Providers. IS allows component providers
to utilize competences and resources outside their organizational scope [Gurbani et al.
2006, 2010] and enables bottom-up collective intelligence [Riehle et al. 2009]. This can
translate into higher quality components and enables reusers to make ISS components
fitter for their use cases by contributing to them.

Independence between Reusers and Providers. In a traditional setup, reusing a soft-
ware component increases the dependence on its providers. IS decreases the depen-
dence of reusers on providers. Reusers have the option to perform changes on their
own in case the component providers have different plans regarding the components
future [Vitharana et al. 2010; van der Linden 2013].

It is even possible to fork a project or perform and maintain one’s own local modifi-
cations [Stol et al. 2011]. As a result, political power play is mitigated [Gurbani et al.
2006]. However, forking should be only done as a last resort because maintaining mul-
tiple forks of the same ISS component is costly and jeopardizes the efficiency benefits
of IS [Gurbani et al. 2006, 2010].

Relief of Component Providers. Component providers can become a bottleneck [Oor
et al. 2008]. IS allows the reusing parties to submit their own changes without having
to wait for the component providers to implement them. Providing and maintaining
components becomes less resource intensive [Vitharana et al. 2010].

van der Linden [2013] sees this benefit as one driving force behind the IS adoption
at Philips:

“The most important reason for Philips to move to inner source development was
to resolve the organisational issue that domain engineering was becoming a bottle-
neck in product line development. Increasingly more business units are using the
platform developed by the domain engineering group.”

van der Linden [2013] summarizes that “inner source helped to break the platform
bottleneck, since using departments are able to create patches.”

5.4. Better Software Product

Organizations reported that IS enabled them to achieve a higher quality software
product than with traditional development methods alone.

Increased Code Quality. IS is believed to result in increased code quality [Goldman
and Gabriel 2005; Smith and Garber-Brown 2007; Martin and Aitken 2012], for exam-
ple, shown by a lower defect ratio [van der Linden 2013]. Fox [2007] of IBM concludes
that “sharing code tends to increase its robustness.”

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:24 M. Capraro and D. Riehle

The increased code quality can be explained by Linus’ law which states that “given
enough eyeballs, all bugs are shallow” [Raymond 1999]. Linus’ law also has validity
in the context of IS [Neus and Scherf 2005; Melian and Mähring 2008] as developers
from the community take part in debugging tasks [Dinkelacker et al. 2002; Riehle et al.
2009].

Other causes can be observed. Dinkelacker et al. [2002] observed “improved quality
levels of shared software as authors’ reputations are at stake.” Also, Riehle et al.
[2009] found the quasipublic scrutiny to make developers “feel compelled to strive for
high quality of contributions.” Finally, the increased employee motivation can result in
higher code quality [Riehle et al. 2009].

More Innovative Development. The surveyed case studies reported that IS can lead
to a more innovative development. Melian et al. [2002] attribute this to enhanced reuse
coming with IS:

“Tentative results indicate that [inner source] and its precursors facilitate collabo-
rative efforts leading to improved conditions for software development, re-use and
innovation within Hewlett-Packard.”

Also, IS enables firm internal open innovation [Morgan et al. 2011] and according to
Riehle et al. [2009] enhances research-to-product transfer:

“Research projects can get expertise and volunteers from downstream product
units. Such early buy-in from the product units eases the research-to-product-unit
transfer.”

A contributor might even directly add innovative features to a component [Riehle et al.
2009].

Exploration-oriented IS projects like the ones at Lucent [Gurbani et al. 2006] or
SAP [Riehle et al. 2009] can be used to explore innovative fields and consequently to
enhance the research-to-product transfer. We believe a high degree of self-organization
(free choice of tasks and components) to support a more innovative development as
developers are given opportunities to contribute new ideas and features to IS projects
outside the scope of their everyday work.

5.5. More Flexible Utilization of Developers

Riehle et al. [2015] observe that in IS developers can be used more flexibly leading to
improved resource management.

Simplified Developer Deployment. IS makes project information openly available
and consequently can ease the deployment of individuals to new projects [Melian et al.
2002]. Developers “can quickly join a project by understanding the rationale behind
some feature selection and implementation” [Melian et al. 2002]. In this way, IS “cre-
ates an opportunity for rapid re-deployment of developers not just from one project to
another but from one product to another” [Dinkelacker et al. 2002]. Also, the unified
tool set often found in IS eases deployment of developers [Dinkelacker et al. 2002;
Riehle et al. 2009; Whittaker et al. 2012].

The ease to deploy developers between projects and tasks depends on the preva-
lence of the IS program in the organization. In a selective or universal IS program,
the projects typically share a similar infrastructure and developer switching projects
benefit from the openly available project information. In a project-specific IS program,
only one IS project is executed. The ease of deployment between the potentially many
non-IS projects does not change due to IS adoption.

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:25

Collaboration of Detached Developers. IS allows detached developers to collaborate.
Due to its open communication mechanisms, developers can collaborate even though
they are geographically [van der Linden et al. 2009; van der Linden 2013] or temporally
[Melian and Mähring 2008] detached.

5.6. Enhanced Knowledge Management

IS can lead to a better knowledge management as it allows knowledge dissemina-
tion by community-based learning and increases availability of knowledge. IS leads to
enhanced intraorganizational knowledge sharing [Riehle et al. 2015].

Selective or universal IS programs make multiple IS projects and their documenta-
tion openly available. Consequently, such IS programs also make available a broader
portfolio of knowledge. However, project-specific IS programs can also enhance the
knowledge management within the organization. For example, the project-specific
IS program around Lucent’s SIP server implementation reportedly helped to convey
knowledge about the back-then new SIP protocol to the organization’s developers
[Gurbani et al. 2006, 2010].

Community-Based Learning. IS enables community-based learning within program-
wide and project-specific communities. At Philips, one formal help desk group was
completely replaced by mailing lists and discussion groups [van der Linden 2013]. IS
spreads knowledge regarding ISS components through the organization by enabling
developers to gain hands-on experiences with new technologies [Gurbani et al. 2006].
Mailing lists, wikis, and forums can support community-based learning [Smith and
Garber-Brown 2007; Martin and Hoffman 2007].

Openness and Availability of Knowledge. Openness of code allows developers to learn
from more experienced colleagues’ code [Whittaker et al. 2012]. In addition, open com-
munication transforms communication contents into accessible artifacts of knowledge.
Typical communication tools that enable such a persistence are forums or mailing lists
[Martin and Hoffman 2007]. The persistent communication as well as open documen-
tation artifacts in IS can result in constantly up-to-date documentation [Melian and
Mähring 2008] and subsequently enhanced openness and availability of knowledge.

5.7. Higher Employee Motivation

IS can facilitate higher motivation and job satisfaction of developers [Riehle et al.
2015] and lead to “improved [. . .] morale and retention” [Martin and Aitken 2012].
The increased motivation can result in the development practice volunteering where
developers are intrinsically motivated similar to developers in open source are [Gurbani
et al. 2006].

Google published an experience report of a developer who reported to be motivated
by the self-selection of tasks at Google [Google-Blog 2006]. We believe that developers
are generally motivated by IS programs with a high degree of self-organization (free
task choice and free component choice).

Riehle et al. [2009] reported of volunteering in an exploration-oriented IS project.
Gurbani et al. [2006] reported of volunteering in a IS project that started as an
exploration-oriented IS project. We believe that exploration-oriented IS project might
be particularly motivating for those developers that are interested in learning about
new technologies or being part of projects they perceive innovative.

6. CHALLENGES OF IS ADOPTION

Within this section, we present a qualitative model of challenges of IS adoption. In the
surveyed literature, no direct link between adoption challenges and specific IS benefits

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:26 M. Capraro and D. Riehle

Table VI. Challenges of IS Adoption

was evident. To the contrary, we believe that the identified adoption challenges affect
all IS benefits as they can affect the IS adoption altogether.

The model of challenges of IS adoption was inferred in the same process as the
model on benefits of IS. Table VI summarizes our model of adoption challenges. We
identified a total of eight adoption challenges (top-level categories in the code system).
Seven of them are characterized further by more fine-grained challenges (lower-level
categories). We found that three of the challenges are due to the mismatch of IS prac-
tices and the traditional preexisting organizational setup (resistance and significant
change, diversity among organizational units, local interests of organizational units).
The remaining four challenges are inherent to IS adoption itself.

6.1. Mismatch of IS and Existing Organizational Setup

6.1.1. Resistance and Significant Change. The adoption of IS induces significant change
to the organization and challenges existing cultural values, established beliefs, and
heuristics [Neus and Scherf 2005]. Consequently, it can trigger resistance [Neus and
Scherf 2005] or simply reluctance to contribute [Stol et al. 2011].

Significant Change in Working Style. IS is different from traditional development
methods. Riehle et al. [2009] of SAP describe that “many open source best practices fly
in the face of traditional software development methods [. . .]. [They] don’t view users as
customers [. . .], but rather they empower users to become co-developers.” The software
components rely on incremental collaborative improvement [Neus and Scherf 2005].
Consequently, far reaching changes to the processes, roles, and other artifacts of the
organizational setups are necessary. Such organizational changes can be challenging.

Cultural Unfitness. An organization’s culture can conflict with the cultural values
inherent to IS and trigger resistance [Neus and Scherf 2005]. Management cannot sim-
ply force this culture to change [Wesselius 2008] and needs to apply well-coordinated
means to adjust the cultural system of an organization [Neus and Scherf 2005;
Wesselius 2008]. The implementation of an IS program requires a “mindset shift from

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:27

delivering [a] final product to incremental quality code” and can lead to a “culture
shock and dissonance” [Martin and Aitken 2012]. IS conflicts with strictly hierarchical
cultures [Riehle et al. 2015].

Some organizations’ cultures are less open to change. We believe universal IS pro-
grams and IS programs with a high degree of self-organization (free choice of tasks)
as well as IS projects owned by all organizational units to be particularly challenging
for these organizations. Such IS programs and projects introduce most change and are
significantly different than traditional development practices.

Resistance Due to Individual Disadvantages. Parties that fear disadvantages result-
ing from IS adoption are likely to resist [Neus and Scherf 2005; Riehle et al. 2015]. To
make individuals participate in the IS program, it is crucial to have them understand
the benefits they can get out of it. The question “What’s in it for me?” must be answered
[Neus and Scherf 2005].

6.1.2. Diversity among Organizational Units. Diversity among organizational units chal-
lenges collaboration among them and consequently IS adoption.

In project-specific IS programs, diversity of processes and tools can become challeng-
ing, because contributors need to adapt to idiosyncratic conditions at the one existing
IS project. In selective or universal IS programs, the diversity becomes more challeng-
ing as there are multiple IS projects. Each of these IS projects potentially have their
own idiosyncratic processes and tools.

Diversity of Processes. Among an organization’s organizational units often a “lack of
process consistency” can be observed [Martin and Aitken 2012]. This hinders collabo-
ration and the utilization of open information and infrastructure in practice. Gurbani
et al. [2010] of Lucent observed that “each business division has idiosyncratic processes
for feature creation and prioritization that must be accommodated.” In regulated en-
vironments such as medical software diverse processes cannot easily be changed and
unified [van der Linden 2013].

Diversity of Tools. Similar to diverse processes, diversity of tools challenges IS adop-
tion. SAP [Riehle et al. 2009], HP [Dinkelacker et al. 2002], and Lucent [Gurbani et al.
2010] faced challenges due to the diversity of software development tools used in dif-
ferent organizational units. Incompatible tools include source code management, and
bug reporting tools [Dinkelacker et al. 2002]. At Lucent, the diversity of tools lead
organizational units to fork the IS project for the sole reason of being able to use the
infrastructure they were used to [Gurbani et al. 2010].

6.1.3. Local Interests of Organizational Units. Middle managers leading organizational
units have their own interests that may conflict with the organization-wide perspective
necessary for IS adoption. We found that they fear loss of resources and an increased
maintenance effort. Also, a mismatch between perceived and actual code ownership
can occur leading to conflicts among organizational units.

Fear of Resource Loss. Middle managers fear that IS may result in disadvantage
for their organizational unit. Dinkelacker et al. [2002] of HP observed that “It’s
also possible that some managers or even developers may be inimical to contribut-
ing any resources to perceived resource competitors within the organization.” If the
middle managers’ performance goals depend on the completion of certain tasks, losing
resources to IS projects can become a personal disadvantage as well. Conversations
with IS practitioners and consultants indicate that this challenge is of high impor-
tance and has a large impact on the IS program’s success: Middle managers have
means to effectively hinder individuals from contributing to IS.

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:28 M. Capraro and D. Riehle

Implementing private-market IS programs can mitigate the middle managers’ fear to
lose resources. Private-markets can be designed to reimburse for both providing an ISS
component or contributing to it. However, as discussed in Section 4, private-markets
can also hinder collaboration.

Mismatch of Perceived and Actual Code Ownership. IS allows individuals or organi-
zational units to contribute significant amounts of code to other organizational units’
code. Vitharana et al. [2010] discuss that this can lead to tension:

“While those consumers who simply use the software ex post might not claim a
stake in the software, those potential consumers who participate in various aspects
of the IOS [internal open source] project (e.g., make change requests) could consider
themselves part owners. [. . .] With possible equity in influence, the two parties could
conceivably perceive themselves to be equal owners of the software.”

Vitharana et al. [2010] suggest further research into the tension between actual and
perceived ownership. Resulting conflicts can hinder further adoption and the success
of IS. We assume unclear rules on ownership can hinder organizational units from both
contributing to and providing an ISS component because of the increased uncertainty
regarding risks and benefits.

We assume a mismatch of perceived and actual code ownership to be less likely
when the ownership of an IS project is explicitly defined (the project is owned by one
or multiple organizational units).

Fear of Maintenance Effort. Usually owners of an IS project are responsible for
maintaining the developed ISS component [Stol et al. 2011]. Each portion of code
contributed to an ISS component adds to the code base that needs to be maintained. Stol
et al. [2011] observed that owners of IS projects were reluctant to accept contributions
because they were afraid of additional maintenance effort.

6.2. Issues with IS Adoption Itself

6.2.1. Difficult Utilization of Openness. Openness is one of the elements that constitute
IS. Establishing openness of code, documentation, and communication can result in a
large amount of information. Consequently, information overload can occur. Properly
utilizing openness while avoiding information overload is a challenge of IS adoption.

Navigation through Large Amount of Data. A portfolio of ISS components and the
program-wide community can quickly grow to dimensions that are not easily digestible
for a human mind. Lucent [Gurbani et al. 2006] and HP [Dinkelacker et al. 2002]
found navigating through large code portfolios or other information catalogs challeng-
ing. Dinkelacker et al. [2002] summarize that “searching and navigating through the
several projects and personnel details can easily become time consuming to the point
of making the effort worthless.”

Navigation through the open data is particularly challenging in selective and uni-
versal IS programs that run more than one IS project. However, also in project-specific
IS programs a large amount of data is opened up and can become difficult to navigate.

Unawareness of Ongoing Work. IS enables organization-wide information exchange.
However, developers within an IS program are often unaware of relevant work per-
formed by others. Public availability of information regarding ongoing work is not
always sufficient to raise awareness. Gurbani et al. [2006] of Lucent describe that a
“significant coordination problem was knowing what kind of work was going on for the
server,” which can lead to redundant work.

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:29

Complexity of Understanding Foreign Code. Once an ISS component for reuse is
identified, it can still be difficult for an individual to make use of it [Stol et al. 2011].
Understanding software source code of other authors is a nontrivial and complex task.
It is crucial to bring developers up to speed on the ISS components’ functionality and
design [Gurbani et al. 2010]. Enabling developers to understand other developers’
code is a challenge not only relevant in IS but in software engineering in general. IS’
openness of documentation and development artifacts have the potential to mitigate
this challenge.

6.2.2. Application of Control and Steering. IS gives more freedom to developers and other
employees. This conflicts with traditional hierarchical application of control in organi-
zations. Challenges in managing subordinates can be a consequence.

We believe IS programs with a high degree of self-organization (free task choice) to
be specifically challenging. As developers choose a part of their tasks themselves, the
control exercised by managers becomes less immediate.

Implementation of New Leadership Style. IS requires a leadership style that supports
meritocracy and self-organization and functions similar to open source [Stol et al. 2014;
Riehle et al. 2009]. However, IS is less self-organized than open source, because IS
“cannot be fully self-organizing, as there are business aspects to consider such as the
timely delivery of products that depend on the shared [IS] asset” [Stol and Fitzgerald
2015].

We found implementing such a leadership style (inheriting attributes from leader-
ship in both open source and traditional organizations) to challenge IS adoption. It is
not clear “how to move from a control based organization to an organization based on
empowerment and trust” [Melian and Mähring 2008]. Hierarchical leadership struc-
ture hinders collaboration and can contradict with IS [Dinkelacker et al. 2002].

Insufficient Models and Metrics. IS is lacking models and metrics [Wesselius 2008;
Riehle et al. 2015]. A set of metrics and business models have proven to be helpful in
coping with open source. These models do not apply to IS as they mostly explain how
organizations gain profit within an open source community [Wesselius 2008; Gurbani
et al. 2006].

Gurbani et al. [2006] remark:

“Additionally, there are challenges in comparing internally developed resources
with commercially available ones since it is difficult to determine the actual cost of
the internal software, or to measure the benefits, such as modifiability, that come
from owning the code.”

Such metrics would be necessary as development products and projects have to oper-
ate within budgets and justify their decision on whether to procure components from
outside vendors.

However, some simple counting heuristics were applied to estimate an IS project’s
and program’s success as well as a project’s quality [Microsoft 2008; Dinkelacker et al.
2002; Riehle et al. 2009; Gurbani et al. 2006].

Dysfunctional Incentive System. We found that an organization’s incentive system
can discourage individuals from participating in IS. Melian et al. [2002] of HP observe:

“The traditional hierarchical organizations reward and promote cohesive project or
product related behavior. [. . .] While community-help and visibility is encouraged,
it is not the main factor when considering the yearly progress of an employee or
their managers. Helping out another person in a different group can sometimes be
detrimental to an individuals career.”

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:30 M. Capraro and D. Riehle

Incentive systems like the annual progress evaluation discussed by Melian et al. [2002]
can hinder successful IS adoption, if in any form individuals are penalized for partic-
ipating in IS. They can discourage individuals from participating in IS and mitigate
the individually perceived IS benefits.

6.2.3. Resentments against Code Transparency. Openness and especially the transparency
of code are elements of IS. But code transparency also triggers fears and potentially
causes challenges.

Fear of Security Problems. Dinkelacker et al. [2002] of HP observed reluctance to
opening code in projects with high security requirements. Schryen [2011] analyzed the
effects open source development has on the produced software’s security. They found
no empirical evidence that open source development (and thus code transparency) is a
primary driver for security vulnerabilities. Given the similarities between open source
and IS, we assume their results are transferable to IS as well.

Fear of Intellectual Property Loss. Knowledge and software code are an important
outcome of a software organization’s work. The so-created intellectual property is an
important resource and worth protecting. Stakeholders in organizations fear that IS
may lead to the leak of intellectual property. Melian and Mähring [2008] describe
that “the balance between openness and safeguarding of intellectual property places
intellectual property decisions with individual developers and makes these decisions a
part of daily practice.” This induces a risk of wrong decisions if no clear policies are in
place.

The risk of disclosing intellectual property also depends on the prevalence of IS.
By potentially involving more developers, universal IS programs are at higher risk
than selective or project-specific programs. We assume that also a higher degree of
self-organization may impose a greater risk as it allows developers to get involved
with more ISS components and thus potentially more code with sensitive intellectual
property.

Resentments against Scrutiny. IS adoption goes hand in hand with openness of code
and artifacts. The so-created scrutiny can lead to developer resistance as it creates
a “virtual panopticon in which every mistake is likely to get noticed” and developers
cannot hide behind a virtual network identity as in open source [Melian and Mähring
2008]. Developers have resentments against such scrutiny:

“Most corporations today operate on a hierarchical organizational structure. This
complicates the process of code sharing by having differing product road-maps and
time-lines, where some managers may just push to get something delivered by a
promised date, irrespective of code quality, which might then be an embarrassment
to post into the [IS] code tree.” (Dinkelacker et al. [2002] regarding HP)

“People were erring on the side of keeping code and information closed and hidden
on their own computers, rather than exposing themselves to potential criticism
[. . .]” (Neus and Scherf [2005] regarding IBM)

The quotes indicate that some developers fear criticism regarding their code or embar-
rassment in front of their colleagues. The fear is worsened if in critical project situations
developers feel forced to develop code they perceive to be of substandard quality.

6.2.4. Contribution Process not Running Smoothly. Implementing and running contribution
processes presented challenges to the case organizations in the surveyed literature.

Unfit Contributions. Contributions do not always fit the ISS component they are
being contributed to [Stol et al. 2011]. Factors that can disqualify a contribution for

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:31

acceptance are missing generality, insufficient code quality, or simply incompatibility
with the component owners’ plans.

To satisfy many reusers, component providers have an interest in keeping the gener-
ality of an ISS component high. Gurbani et al. [2006] observed that contributions often
lacked generality and consequently challenged IS adoption: Developers “were unac-
customed to thinking and designing solutions that were more general than their own
product line. They typically did not make changes to the SIP server in a way that would
support all users [. . .], unconcerned about building in dependencies that limited the
generality of their work.” In addition to being unaccustomed to delivering general code,
product specific time pressure can lead to reduced generality of contributions. Missing
generality of contributions can lead to a less reusable ISS component and architectural
erosion [Gurbani et al. 2006].

Uncontrolled Forking. IS allows component reusers to utilize and change an ISS
component’s source code at will. Being able to perform local changes to code is an
intended benefit of IS [Stol et al. 2014]. However, it can also challenge the IS adoption
if uncontrolled forking occurs. Lucent faced such uncontrolled forking [Gurbani et al.
2006, 2010]: Instead of contributing back to the IS project, different teams created
their own forks that diverged from the original implementation. Thus, maintenance
efforts needed to be performed redundantly. Lucent limited forking by evangelizing to
the teams the benefits of using a shared common repository instead of maintaining
their own forks. If forking cannot be avoided, the forked ISS components should be
synchronized with the master periodically [Gurbani et al. 2006, 2010].

Formation of Patch Queues. Contributions also create additional workload for the
component providers as they need to be properly reviewed and subsequently accepted
or rejected. Gurbani et al. [2006] of Lucent observed that the IS project’s benevolent
dictator had insufficient time to review patches in a timely manner. A group of com-
mitters was created to support him. However, they were reluctant to set aside time.
This can lead to a patch queue backlog: A long backlog of patches is piling up and the
waiting time until a specific patch is accepted or rejected increases.

6.2.5. What to Inner-Source? It was not clear which software benefits most from being
inner-sourced. In universal IS programs, no decision on suitable ISS components needs
to be made because all software is inner-sourced by definition. For project-specific and
selective IS programs, however, Gurbani et al. [2006] of Lucent summarize that “it is not
clear, in general, [. . .] when to initiate a project that can serve as a shared [IS] resource.”
Identifying the right components to inner-source is specifically important in the early
phases of an IS program. The failure or success of an IS pilot project can predetermine
the success of the IS adoption [Stol et al. 2014; Stol and Fitzgerald 2015]. Software
components with a modular architecture and multiple interested stakeholders are
particularly fit to be inner-sourced [Stol et al. 2014].

7. CLOSING

7.1. Roadmap for Future Research

Our survey arranged research results about IS. We presented a model of IS elements, a
classification framework for IS, IS benefits, and adoption challenges. Some areas that
we believe are relevant for researchers and practitioners were not yet covered by the
literature. We suggest the following future research:

Find and Classify IS Development Practices. As part of the elements of IS, we iden-
tified four IS development practices that were exercised within the surveyed IS pro-
grams. We doubt their completeness. We believe many collaborative practices can be

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

67:32 M. Capraro and D. Riehle

observed in the open source world. We suggest future research to identify such addi-
tional practices from open source and evaluate their fitness for organization internal
use. We envision a pattern system of IS practices similar to the design patterns by
Gamma et al. [1994].

Understand IS Programs with Free Task Choice. In IS programs with free choice of
tasks, developers are granted much autonomy. Only a few publications regarding this
class of IS exist. We suggest further explorative research to identify what the benefits
and challenges of IS programs with free task choice are and how they can be steered
effectively.

Understand IS Projects without Governing Organizational Units. We discussed the
existence of IS projects that were governed by all organizational units. We suggest
further research on the experiences of organizations that implemented IS projects
with such a governance model. It is unclear to us how conflicts can be resolved, which
components are fit to be maintained without ownership by select organizational units,
how software quality can be best ensured, and how software evolution can be steered
in such projects.

Develop Models for Private-Market IS. Philips considered the implementation of
private-market IS. We suggest further research on how models for private-markets
must be designed and how they can benefit and hinder IS adoption.

Classify Additional IS Programs and Projects, Extend Classification Framework.
Based on the surveyed literature, we were only able to classify a small amount of
IS programs (12) and IS projects (six). We suggest finding and classifying additional
IS programs and projects, and studying the prevalence of each class, and correlations
between the classes. Consequently, researchers could draw conclusions on which classes
work best together under what conditions. The classification framework we presented
is developed from literature that was available to us at time of analysis. We believe that
future research can find additional dimensions and classes for classifying IS programs
and projects. We encourage researchers to extend our classification framework.

Evaluate IS Benefits. We synthesized a qualitative model of IS benefits from the
surveyed literature. However, we discussed that the validity and specifically gener-
alizability of IS benefits presented by the surveyed literature is unclear. We suggest
future research into validating the reported IS benefits and the extent of their effect
on adopting organizations.

Identify Community Management Practices. We were not able to infer proven best
practices of community management in IS. We suggest future research to identify
and evaluate community management practices. This can be done by mapping IS
communities to the community types presented by Tamburri et al. [2013] and then
identifying how management practices for these community types can be transferred
to IS.

Metrics and Incentives Systems. IS is lacking metrics. We suggest future research to
identify metrics to measure the progress of IS adoption and the quality of IS programs,
projects, and communities. Such metrics could serve as the foundation for IS-specific
incentive systems for developers and development managers.

Evolution of IS Programs and Projects. The early phases of IS (IS adoption) has
been extensively covered by literature. However, it is not clear to us how programs as a
whole evolve. Similarly, it is unclear to us how IS projects evolve. The reports regarding
Philips [van der Linden et al. 2009; van der Linden 2009, 2013] discussed openness
as one dimension of software evolution. We discussed possible similarities between the

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

Inner Source Definition, Benefits, and Challenges 67:33

evolution of open source projects as discussed by Nakakoji et al. [2002] and IS projects.
We suggest future research on how IS programs and projects evolve.

Envision Tools. Today, development methods like agile or plan-driven development
are supported by an extensive amount of software development tools. We suggest re-
searchers look at tool requirements that emerge around IS and envision and validate
potential solutions for these requirements.

7.2. Conclusion

The majority of scientific publications regarding IS describe the phenomena in the
context of one or a few organizations. However, the research area lacked a systematic
arrangement of prior research results. With this survey article, we presented an in-
depth literature review and analysis to resolve this shortcoming by systematically
arranging prior research results regarding IS.

We provided a holistic definition of IS and related concepts and provided a model
of four elements that constitute IS. We introduced a classification framework for IS
programs based on three dimensions and IS projects based on two dimensions. We
applied our framework to demonstrate its capabilities and delivered a map of already
researched IS programs and projects.

We combined known case study reports to synthesize qualitative models regarding IS
benefits and challenges of IS adoption. These qualitative models deliver an aggregated
overview of the experiences made in at least 13 IS programs.

ACKNOWLEDGMENTS

We thank Ann Barcomb, Hannes Dohrn, and Andreas Kaufmann for their constructive comments during
the writer’s workshop of this article as well as Klaas-Jan Stol, Sushil K. Bajracharya, and the anonymous
peer reviewers for their feedback that helped us to improve this article.

REFERENCES

Pär J. Ågerfalk, Brian Fitzgerald, and Klaas-Jan Stol. 2015. Software Sourcing in the Age of Open: Leveraging
the Unknown Workforce. Springer.

Gary Anthes. 2005. Software Reuse: Making it Work—DTE Energy may have cracked the cultural side
of reusable software. (2005). Interview with Lynne Ellyn of DTE Energy. Last retrieved in February
2015, http://www.computerworld.com/article/2556383/app-development/software-reuse- - -making-it-
work.html.

Matt Asay. 2007. Microsoft Office experiments with open source (development). (2007). Blog article. Last
retrieved in February 2015, http://archive.oreilly.com/pub/post/microsoft_office_experiments_w.html.

Jörg Bartholdt and Detlef Becker. 2012. Scope extension of an existing product line. In Proceedings of the 16th
International Software Product Line Conference - Volume 1 (SPLC’12). ACM, New York, NY, 275–282.
DOI:http://dx.doi.org/10.1145/2362536.2362573

Doug Beizer. 2009. DOD launches site to develop open-source software. The Business of Federal Tech-
nology (2009). Last retrieved in March 2015, http://fcw.com/articles/2009/01/30/dod-launches-site-to-
develop-open-source-software.aspx.

Herbert H. Clark and Susan E. Brennan. 1991. Grounding in Communication. American Psychological
Association, 127–149.

Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. 2008. Free/libre open-source software
development: What we know and what we do not know. ACM Comput. Surv. 44, 2, Article 7 (March 2008),
35 pages. DOI:http://dx.doi.org/10.1145/2089125.2089127

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding in GitHub: Transparency
and collaboration in an open software repository. In Proceedings of the ACM 2012 Conference on Com-
puter Supported Cooperative Work (CSCW’12). ACM, New York, NY, 1277–1286. DOI:http://dx.doi.org/
10.1145/2145204.2145396

Jamie Dinkelacker and P Garg. 2001. Corporate source: Applying open source concepts to a corporate
environment (position paper). 1st Workshop on Open Source Software Engineering (2001).

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

http://www.computerworld.com/article/2556383/app-development/software-reuse-thinsp;-thinsp;-making-it-work.html
http://www.computerworld.com/article/2556383/app-development/software-reuse-thinsp;-thinsp;-making-it-work.html
http://archive.oreilly.com/pub/post/microsoftofficeexperimentsw.html
http://dx.doi.org/10.1145/2362536.2362573
http://fcw.com/articles/2009/01/30/dod-launches-site-to-develop-open-source-software.aspx
http://fcw.com/articles/2009/01/30/dod-launches-site-to-develop-open-source-software.aspx
http://dx.doi.org/10.1145/2089125.2089127
http://dx.doi.org/ ignorespaces 10.1145/2145204.2145396
http://dx.doi.org/ ignorespaces 10.1145/2145204.2145396

67:34 M. Capraro and D. Riehle

Jamie Dinkelacker, Pankaj K. Garg, Rob Miller, and Dean Nelson. 2002. Progressive open source. In
Proceedings of the 24th International Conference on Software Engineering. ACM, 177–184. http://doi.
acm.org/10.1145/581339.581363

Steve Fox. 2007. IBM Internal Open Source Bazaar. (2007). Presentation at the IBM Linux Technology
Center in November 2007.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design Patterns: Elements of
Reusable Object-oriented Software. Pearson Education.

Gary Gaughan, Brian Fitzgerald, Lorraine Morgan, and Maha Shaikh. 2007. An examination of the use of
inner source in multinational corporations. In 1st OPAALS Workshop.

Gary Gaughan, Brian Fitzgerald, and Maha Shaikh. 2009. An examination of the use of open source software
processes as a global software development solution for commercial software engineering. In Proceedings
of the 35th Euromicro Conference on Software Engineering and Advanced Applications (SEAA’09). 20–27.
DOI:http://dx.doi.org/10.1109/SEAA.2009.86

Ron Goldman and Richard P. Gabriel. 2005. Innovation Happens Elsewhere: Open Source as Business Strat-
egy. Morgan Kaufmann.

Google-Blog. 2006. Google’s 20 percent time in action. (2006). Authored by Alex. K; Last retrieved in March
2015, http://googleblog.blogspot.de/2006/05/googles-20-percent-time-in-action.html.

Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. 2005. A case study of open source tools and practices
in a commercial setting. In Proceedings of the 5th Workshop on Open Source Software Engineering
(5-WOSSE). ACM, New York, NY, 1–6. DOI:http://dx.doi.org/10.1145/1082983.1083264

Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. 2006. A case study of a corporate open source devel-
opment model. In Proceedings of the 28th International Conference on Software Engineering (ICSE’06).
ACM, New York, NY, 472–481. DOI:http://dx.doi.org/10.1145/1134285.1134352

Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. 2010. Managing a corporate open source software
asset. Commun. ACM 53, 2 (Feb. 2010), 155–159. DOI:http://dx.doi.org/10.1145/1646353.1646392

Gary Hamel and Bill Breen. 2007. The Future of Management. Harvard Business School Press.
Martin Höst, Klaas-Jan Stol, and Alma Oručević-Alagicć. 2014. Inner source project management. In Soft-

ware Project Management in a Changing World, Günther Ruhe and Claes Wohlin (Eds.). Springer Berlin,
343–369. DOI:http://dx.doi.org/10.1007/978-3-642-55035-5_14

Rick Lehrbaum. 2001. HP launches “CoolBase” open source project. LinuxGizmos (2001). Last retrieved in
March 2015, http://archive.linuxgizmos.com/hp-launches-coolbase-open-source-project/.

Johan Linåker, Maria Krantz, and Martin Höst. 2014. On infrastructure for facilitation of inner source
in small development teams. In Product-Focused Software Process Improvement, Andreas Jedl-
itschka, Pasi Kuvaja, Marco Kuhrmann, Tomi Männistö, Jürgen Münch, and Mikko Raatikainen
(Eds.). Lecture Notes in Computer Science, Vol. 8892. Springer International Publishing, 149–163.
DOI:http://dx.doi.org/10.1007/978-3-319-13835-0_11

Juho Lindman, Mikko Riepula, Matti Rossi, and Pentti Marttiin. 2013. Open source technology in intra-
organisational software development private markets or local libraries. In Managing Open Innovation
Technologies, Jenny S. Z. Eriksson Lundström, Mikael Wiberg, Stefan Hrastinski, Mats Edenius, and
Pär J. Ågerfalk (Eds.). Springer, Berlin, 107–121. DOI:http://dx.doi.org/10.1007/978-3-642-31650-0_7

Juho Lindman, Matti Rossi, and Pentti Marttiin. 2008. Applying open source development practices inside
a company. In Open Source Development, Communities and Quality, Barbara Russo, Ernesto Damiani,
Scott Hissam, Björn Lundell, and Giancarlo Succi (Eds.). IFIP—The International Federation for Infor-
mation Processing, Vol. 275. Springer, 381–387. DOI:http://dx.doi.org/10.1007/978-0-387-09684-1_36

Juho Lindman, Matti Rossi, and Pentti Marttiin. 2010. Open source technology changes intra-organizational
systems development-a tale of two companies. In Proceedings of the 18th European Conference on Infor-
mation Systems.

Guy Martin and Andrew Aitken. 2012. Inner Sourcing—Community Development Practices in Corpo-
rate IT. (2012). Last retrieved in March 2015, https://www.blackducksoftware.com/resources/webinar/
understanding-inner-source-fundamentals-transparency-collaboration-and-self-organization.

Guy Martin and Aaron Lippold. 2011. Forge.mil: A case study for utilizing open source methodologies inside of
government. In Open Source Systems: Grounding Research, Scott A. Hissam, Barbara Russo, Manoel G.
de Mendonca Neto, and Fabio Kon (Eds.). IFIP Advances in Information and Communication Technology,
Vol. 365. Springer, Berlin, 334–337. DOI:http://dx.doi.org/10.1007/978-3-642-24418-6_28

Ken Martin and Bill Hoffman. 2007. An open source approach to developing software in a small organization.
IEEE Software 24, 1 (Jan. 2007), 46–53. DOI:http://dx.doi.org/10.1109/MS.2007.5

Catharina Melian. 2007. Progressive Open Source: The Construction of a Development Project at Hewlett-
Packard. Ph.D. dissertation. Economic Research Institute, Stockholm School of Economics (EFI).

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

http://doi.acm.org/10.1145/581339.581363
http://doi.acm.org/10.1145/581339.581363
http://dx.doi.org/10.1109/SEAA.2009.86
http://googleblog.blogspot.de/2006/05/googles-20-percent-time-in-action.html
http://dx.doi.org/10.1145/1082983.1083264
http://dx.doi.org/10.1145/1134285.1134352
http://dx.doi.org/10.1145/1646353.1646392
http://dx.doi.org/10.1007/978-3-642-55035-5_14
http://archive.linuxgizmos.com/hp-launches-coolbase-open-source-project/
http://dx.doi.org/10.1007/978-3-319-13835-0_11
http://dx.doi.org/10.1007/978-3-642-31650-0_7
http://dx.doi.org/10.1007/978-0-387-09684-1_36
https://www.blackducksoftware.com/resources/webinar/understanding-inner-source-fundamentals-transparency-collaboration-and-self-organization
https://www.blackducksoftware.com/resources/webinar/understanding-inner-source-fundamentals-transparency-collaboration-and-self-organization
http://dx.doi.org/10.1007/978-3-642-24418-6_28
http://dx.doi.org/10.1109/MS.2007.5

Inner Source Definition, Benefits, and Challenges 67:35

Catharina Melian, Cathy Burles Ammirati, Pankaj Garg, and Guje Sevon. 2002. Building Networks of
Software Communities in a Large Corporation. Technical Report HPL-2002-12. HP Laboratories Palo
Alto.

Catharina Melian and Magnus Mähring. 2008. Lost and gained in translation: Adoption of open
source software development at Hewlett-Packard. In Open Source Development, Communities and
Quality, Barbara Russo, Ernesto Damiani, Scott Hissam, Björn Lundell, and Giancarlo Succi
(Eds.). IFIP—The International Federation for Information Processing, Vol. 275. Springer, 93–104.
DOI:http://dx.doi.org/10.1007/978-0-387-09684-1_8

Microsoft. 2008. Open Source at Microsoft—Bringing the Open Source Approach In-House. (2008). White
paper, last retrieved March 2015, http://download.microsoft.com/download/2/6/7/267E8B26-B94B-4BF6-
88E8-32B3B3AF6F09/CodeBox_vfinal.pdf.

Lorraine Morgan, Joseph Feller, and Patrick Finnegan. 2011. Exploring inner source as a form of intraor-
ganisational open innovation. In Proceedings of the 19th European Conference on Information Systems.

Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and Yunwen Ye. 2002.
Evolution patterns of open-source software systems and communities. In Proceedings of the Inter-
national Workshop on Principles of Software Evolution (IWPSE’02). ACM, New York, NY, 76–85.
DOI:http://dx.doi.org/10.1145/512035.512055

Andreas Neus and Philipp Scherf. 2005. Opening minds: Cultural change with the introduction of open-source
collaboration methods. IBM Syst. J. 44, 2 (2005), 215–225. DOI:http://dx.doi.org/10.1147/sj.442.0215

Patrick Oor, René Krikhaar, and ICT NoviQ. 2008. Balancing technology, organization, and process in inner
source. Dagstuhl Workshop 08142: Combining the Advantages of Product Lines and Open Source (2008),
1548.

Tim O’Reilly. 2000. Archived email discussion on Open Source and OpenGL. (2000). Last retrieved in Febru-
ary 2015, http://archive.oreilly.com/pub/a/oreilly/ask_tim/2000/opengl_1200.html.

Eric Raymond. 1999. The cathedral and the bazaar. Knowl., Technol. Policy 12, 3 (1999), 23–49.
Dirk Riehle. 2007. The economic motivation of open source software: Stakeholder perspectives. Computer

40, 4 (2007), 25–32.
Dirk Riehle. 2009. The commercial open source business model. In Value Creation in E-Business Manage-

ment, Matthew L. Nelson, Michael J. Shaw, and Troy J. Strader (Eds.). Lecture Notes in Business Infor-
mation Processing, Vol. 36. Springer, Berlin, 18–30. DOI:http://dx.doi.org/10.1007/978-3-642-03132-8_2

Dirk Riehle. 2015. The five stages of open source volunteering. In Crowdsourcing, Wei Li, Michael Huhn, and
Wei-Tek Tsai (Eds.). Springer. Republished from The Five Stages of Open Source Volunteering. Friedrich-
Alexander-Universität Erlangen-Nürnberg, Dept. of Computer Science, Technical Report, CS-2014-01,
March 2014. Erlangen, Germany, 2014.

Dirk Riehle, Maximilian Capraro, Detlef Kips, and Lars Horn. 2015. Inner Source in Platform-Based Product
Engineering. Technical Report CS-2015-02. Faculty of Engineering, Department of Computer Science,
Open Source Research Group. 16 pages.

Dirk Riehle, John Ellenberger, Tamir Menahem, Boris Mikhailovski, Yuri Natchetoi, Barak Naveh, and
Thomas Odenwald. 2009. Open collaboration within corporations using software forges. IEEE Software
26, 2 (2009), 52–58.

Dirk Riehle and Detlef Kips. 2012. Geplanter Inner Source: Ein Weg zur Profit-Center-übergreifenden
Wiederverwendung. Technical Report CS-2012-05. Faculty of Engineering, Department of Computer
Science, Open Source Research Group.

Jason E. Robbins. 2005. Adopting open source software engineering (OSSE) practices by adopting OSSE
tools. In Perspectives on Free and Open Source Software, Joseph Feller, Brian Fitzgerald, Scott Hissam,
and Karim Lakhani (Eds.). MIT Press, Cambridge, MA, 245–264.

Andreas Schreiber, Roberto Galoppini, Michael Meinel, and Tobias Schlauch. 2014. An open source software
directory for aeronautics and space. In Proceedings of the International Symposium on Open Collabora-
tion. ACM, 46.

Guido Schryen. 2011. Is open source security a myth? Commun. ACM 54, 5 (May 2011), 130–140.
DOI:http://dx.doi.org/10.1145/1941487.1941516

Anthony Senyard and Martin Michlmayr. 2004. How to have a successful free software project. In Pro-
ceedings of the 11th Asia-Pacific Software Engineering Conference, 2004. 84–91. DOI:http://dx.doi.org/
10.1109/APSEC.2004.58

Srinarayan Sharma, Vijayan Sugumaran, and Balaji Rajagopalan. 2002. A framework for creating hybrid-
open source software communities. Inform. Syst. J. 12, 1 (2002), 7–25.

Phillip Smith and Chris Garber-Brown. 2007. Traveling the open road: Using open source practices to trans-
form our organization. In Agile Conference (AGILE), 2007. 156–161. DOI:http://dx.doi.org/ 10.1109/AG-
ILE.2007.65

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

http://dx.doi.org/10.1007/978-0-387-09684-1_8
http://download.microsoft.com/download/2/6/7/267E8B26-B94B-4BF6- ignorespaces 88E8-32B3B3AF6F09/CodeBox_vfinal.pdf
http://download.microsoft.com/download/2/6/7/267E8B26-B94B-4BF6- ignorespaces 88E8-32B3B3AF6F09/CodeBox_vfinal.pdf
http://dx.doi.org/10.1145/512035.512055
http://dx.doi.org/10.1147/sj.442.0215
http://archive.oreilly.com/pub/a/oreilly/ask_tim/2000/opengl_1200.html
http://dx.doi.org/10.1007/978-3-642-03132-8_2
http://dx.doi.org/10.1145/1941487.1941516
http://dx.doi.org/ ignorespaces 10.1109/APSEC.2004.58
http://dx.doi.org/ ignorespaces 10.1109/APSEC.2004.58
http://dx.doi.org/ ignorespaces 10.1109/AGILE.2007.65
http://dx.doi.org/ ignorespaces 10.1109/AGILE.2007.65

67:36 M. Capraro and D. Riehle

Mirjana Spasojevic and Tim Kindberg. 2001. Evaluating the cooltown user experience. In Ubicomp 2001
Workshop: Evaluation Methodologies for Ubiquitous Computing.

Andrew Stellman and Jennifer Greene. 2009. Beautiful Teams: Inspiring and Cautionary Tales from Veteran
Team Leaders. O’Reilly Media, Inc.

Klaas-Jan Stol. 2011. Supporting Product Development with Software from the Bazaar. Ph.D. dissertation.
University of Limerick.

Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and Brian Fitzgerald. 2014. Key factors
for adopting inner source. ACM Trans. Softw. Eng. Methodol. 23, 2, Article 18 (April 2014), 35 pages.
DOI:http://dx.doi.org/10.1145/2533685

Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and Brian Fitzgerald. 2011. A comparative study
of challenges in integrating open source software and inner source software. Inf. Softw. Technol. 53, 12
(2011), 1319–1336.

Klaas-Jan Stol and Brian Fitzgerald. 2015. Inner source-Adopting open source development practices in orga-
nizations: A tutorial. IEEE Software 32, 4 (July 2015), 60–67. DOI:http://dx.doi.org/10.1109/MS.2014.77

Damian A. Tamburri, Patricia Lago, and Hans van Vliet. 2013. Organizational social structures for software
engineering. ACM Comput. Surv. (CSUR) 46, 1 (2013), 3.

David R. Thomas. 2006. A general inductive approach for analyzing qualitative evaluation data. Am. J. Eval.
27, 2 (June 2006), 237–246.

Richard Torkar, Pau Minoves, and Janina Garrigós. 2011. Adopting free/libre/open source software practices,
techniques and methods for industrial use. J. Assoc. Inf. Syst. 12, 1 (2011), 88–122.

Frank van der Linden. 2009. Applying open source software principles in product lines. Cepis Upgrade—Eur.
J. Inf. Profess. 10 (2009), 32–41.

Frank van der Linden. 2013. Open source practices in software product line engineering. In Software Engi-
neering, Andrea De Lucia and Filomena Ferrucci (Eds.). Lecture Notes in Computer Science, Vol. 7171.
Springer, Berlin, 216–235. DOI:http://dx.doi.org/10.1007/978-3-642-36054-1_8

Frank van der Linden, Björn Lundell, and Pentti Marttiin. 2009. Commodification of industrial software: A
case for open source. IEEE Software 26, 4 (July 2009), 77–83. DOI:http://dx.doi.org/10.1109/MS.2009.88

Padmal Vitharana, Julie King, and Helena Shih Chapman. 2010. Impact of internal open source development
on reuse: Participatory reuse in action. J. Manag. Inf. Syst. 27, 2 (2010), 277–304.

Jacco Wesselius. 2008. The bazaar inside the cathedral: Business models for internal markets. IEEE Software
25, 3 (May 2008), 60–66. DOI:http://dx.doi.org/10.1109/MS.2008.79

James A. Whittaker, Jason Arbon, and Jeff Carollo. 2012. How Google Tests Software. Addison-Wesley.
David Worthington. 2005. IBM Turns to Open Source Development. (2005). Interview with Doug Heintz-

man of IBM. Last retrieved in February 2015, http://betanews.com/2005/06/13/ibm-turns-to-open-source-
development/.

Received October 2015; revised April 2016; accepted September 2016

ACM Computing Surveys, Vol. 49, No. 4, Article 67, Publication date: December 2016.

http://dx.doi.org/10.1145/2533685
http://dx.doi.org/10.1109/MS.2014.77
http://dx.doi.org/10.1007/978-3-642-36054-1_8
http://dx.doi.org/10.1109/MS.2009.88
http://dx.doi.org/10.1109/MS.2008.79
http://betanews.com/2005/06/13/ibm-turns-to-open-source-development/
http://betanews.com/2005/06/13/ibm-turns-to-open-source-development/

